Rhodium- or Iridium-Catalyzed *trans*-Hydroboration of Terminal Alkynes, Giving (Z)-1-Alkenylboron Compounds

Toshimichi Ohmura, Yasunori Yamamoto, and Norio Miyaura*

Division of Molecular Chemistry Graduate School of Engineering Hokkaido University, Sapporo 060-8628, Japan

Received January 26, 2000

Hydroboration of alkynes is a practical route for the syntheses of 1-alkenylboron compounds which are a versatile reagent for organic synthesis.^{1,2} Although much attention has been recently focused on the metal-catalyzed hydroboration with catecholborane (**1a**) or pinacolborane (**1b**), both the uncatalyzed^{1,3} and the catalyzed reactions^{4,5} yield (*E*)-1-alkenylboronates through the *anti*-Markovnikov and *syn*-addition of borane to terminal alkynes. Thus, (*Z*)-1-alkenylboron compounds have been synthesized by an alternative, two-step method.^{6,7} We wish to report a formal *trans*-hydroboration of terminal alkynes with **1a** or **1b** to yield *cis*-1-alkenylboronates in the presence of a Rh(I)- or Ir(I)-P'Pr₃ complex and Et₃N (Scheme 1). For convenience of the analyses, all products derived from **1a** were converted into the corresponding pinacol esters prior to isolation of **2**–**4**.

The selected results for the catalytic hydroboration of 1-octyne are shown in Table 1.

The catalyst in situ generated from $[Rh(cod)Cl]_2$ and P^iPr_3 (4 equiv) completed the hydroboration of 1-octyne within 1 h at room temperature (entry 1).⁸ The presence of more than 1 equiv of Et₃N was critical to achieve high yield and high *cis*-selectivity because a similar reaction resulted in a mixture of all isomers **2**–**4** in the absence of Et₃N (entry 2). Another dominant factor reversing the conventional *cis*-hydroboration to the *trans*-hydroboration was the use of alkyne in excess of the borane reagent because (*E*)-isomer **3** was predominated when using a slightly excess of **1a** (entry 3). The reaction initially yields (*Z*)-alkenylboronate **2**, but an addition/elimination sequence of Rh–H species isomerizes **2** to a more stable (*E*)-isomer **3**.^{9a,b} The steric and electronic effects of PⁱPr₃ also play a major role in influencing

(2) (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457. (b) Suzuki, A.
 In Metal-Catalyzed Cross-Coupling Reactions; Diederich, F., Stang, P. J., Eds.;
 VCH: Weinheim, 1998; p 49. (c) Suzuki, A. J. Organomet. Chem. 1999, 576, 147.

(3) Tucker, C. E.; Davidson, J.; Knochel, P. J. Org. Chem. 1992, 57, 3482.
(4) For reviews: (a) Burgess, K.; Ohlmeyer, M. J. Chem. Rev. 1991, 91, 1179. (b) Beletskaya, I.; Pelter, A. Tetrahedron 1997, 53, 4957.

(5) Catalytic hydroboration of alkynes: (a) Männing, D.; Nöth, H. Angew. *Chem., Int. Ed. Engl.* **1985**, *24*, 878. (b) Gridnev, I. D.; Miyaura, N.; Suzuki, A. Organometallics **1993**, *12*, 589. (c) Pereira, S.; Srebnik, M. Organometallics **1995**, *14*, 3127. (d) He, X.; Hartwig, J. F. J. Am. Chem. Soc. **1996**, *118*, 1696. (e) Pereira, S.; Srebnik, M. Tetrahedron Lett. **1996**, *37*, 3283.

(6) Intramolecular substitution of 1-halo-1-alkenylboronates with metal hydrides. (a) Negishi, E.; Williams, R. M.; Lew, G.; Yoshida, T. J. Organomet. Chem. 1975, 92, C4. (b) Campbell, J. B. Jr.; Molander, G. A. J. Organomet. Chem. 1978, 156, 71. (c) Brown, H. C.; Imai, T. Organometallics 1984, 3, 1392.

(7) Other synthesis of (Z)-1-alkenylboranes. (a) Srebnik, M.; Bhat, N. G.;
Brown, H. C. *Tetrahedron Lett.* **1988**, 29, 2635. (b) Deloux, L.; Srebnik, M.
J. Org. Chem. **1994**, 59, 6871. (c) Takahashi, K.; Takagi, J.; Ishiyama, T.;
Miyaura, N. Chem. Lett. **2000**, 126.

(8) The Z-geometry was assigned by the coupling constant (J = 13.4 Hz).^{7b} (9) (a) Ojima, I.; Clos, N.; Donovan, R. J.; Ingallina, P. Organometallics **1990**, 9, 3127. (b) Tanke, R. S.; Crabtree, R. H. J. Am. Chem. Soc. **1990**, 112, 7984. (c) Jun, C.-H.; Crabtree, R. H. J. Organomet. Chem. **1993**, 447, 177. (d) Maruyama, Y.; Yamamura, K.; Nakayama, I.; Yoshiuchi, K.; Ozawa, F. J. Am. Chem. Soc. **1998**, 120, 1421.

Scheme 1. Catalyzed Hydroboration of Alkynes

Table 1. Effect of Catalyst in the Hydroboration of 1-Octyne^a

				isomeric ratio ^c		
entry	catalyst	borane	yield/% ^b	2	3	4
1	$[Rh(cod)Cl]_2 - 4P^iPr_3$	1a	86(74)	99	1	0
2^d		1a	60	18	65	17
3^e		1a	94 ^f	9	90	1
4	$[Rh(cod)Cl]_2 - 4P^nBu_3$	1a	56	48	45	7
5	$[Rh(cod)Cl]_2 - 4PCy_3$	1a	86	98	2	0
6	[Rh(cod)Cl] ₂ -4P'Bu ₃	1a	34	21	64	15
7	$[Ir(cod)Cl]_2 - 4P^iPr_3$	1a	43	58	32	10
8^g	RuHCl(CO)(P ⁱ Pr ₃) ₂	1a	7	55	45	0
9^h	$[Rh(cod)Cl]_2 - 4P^i Pr_3$	1b	81(71)	91	7	2
10^{h}	$[Ir(cod)Cl]_2 - 4P^iPr_3$	1b	73	70	25	5

^{*a*} To a solution of $[M(cod)Cl]_2$ (M = Rh or Ir, 0.015 mmol), a phosphine ligand (0.06 mmol), Et₃N (1 mmol), and a borane (1.0 mmol) in cyclohexane was added 1-octyne (1.2 mmol). The mixture was then stirred at rt for 1 h, unless otherwise noted. ^{*b*} GC yields based on a borane and isolated yields by chromatography over silica gel in parentheses. ^{*c*} Determined by ¹H NMR of crude product. ^{*d*} Reaction carried out in the absence of Et₃N. ^{*c*} alkyne/borane = 0.85/1. ^{*f*} Based on 1-octyne. ^{*g*} The reaction in CH₂Cl₂. ^{*h*} alkyne/borane/Et₃N = 2/1/5.

the course of the reaction. The PCy₃ (Cy = cyclohexyl) complex revealed comparable selectivity (entry 5), but other complexes of PPh₃, PMePh₂, PMe₃, PⁿPr₃, PⁿBu₃ (entry 4), PⁱBu₃, and PⁱBu₃ (entry 6) yielded a mixture of three possible isomers. The Ir and Ru complexes are not effective for selective hydroboration (entries 7 and 8). The reaction of pinacolborane **1b** is shown in entries 9 and 10. The Ir-catalyzed reaction again resulted in a mixture of products, but high *cis*-selectivity was achieved by the Rh(I) complex in the presence of 2 equivalents of 1-octyne.

Both **1a** and **1b** hydroborate various terminal alkynes in the presence of a Rh(I)-PⁱPr₃ complex (Table 2).¹⁰ There is no large difference in *cis*-selectivity for the representative terminal alkynes (entries 1–13), but the hydroboration with **1b**, in general, resulted in slightly lower selectivity than that of **1a**. However, it is interesting that pinacolborane **1b** exceptionally resulted in better stereoselectivities for *tert*-butyl acetylene in the presence of a Rh or Ir catalyst (entries 7–9). All attempts at the *trans*-hydroboration of internal alkynes were unsuccessful.

The hydroboration of 1-deuterio-1-octyne (96% d₁ incorporation) with **1a** gave mechanistic information for the *trans*hydroboration (Scheme 2). The β -hydrogen in the *cis*-product unexpectedly does not derive from the borane reagents because the deuterium labeled at the terminal carbon selectively shifted to the β -carbon. Thus, the results do not fit the mechanisms previously proposed in the catalyzed *trans*-hydrometalation of terminal alkynes.^{9,11} The mechanism isomerizing the *trans*-product

^{(1) (}a) Smith, K.; Pelter, A.; Brown, H. C. *Borane Reagents*; Academic Press: London, 1988. (b) Smith, K.; Pelter, A. In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 8, p 703. (2) (a) Miyaura, N.; Suzuki, A. *Chem. Rev.* **1995**, *95*, 2457. (b) Suzuki, A.

⁽¹⁰⁾ A typical procedure: To a solution of $[Rh(cod)Cl]_2$ (0.015 mmol), P'Pr₃ (0.06 mmol), and Et₃N (1 mmol) in cyclohexane (3 mL) was added **1a** (1.0 mmol). After being stirred for 30 min, 1-decyne (1.2 mmol) was added and the mixture was stirred at room temperature for 1 h. A solution of pinacol (1.5 mmol) in cyclohexane (1 mL) was added and the resulting mixture was then stirred at rt for 12 h to convert the catechol ester to the pinacol ester. The chromatography over silica gel with hexane/ether = 40/1 afforded 2-[(Z)-1-octenyl]-4,4,5,5-tetramethyl-1,3,2-dioxaborolane in 79% yield.

 ^{(11) (}a) Asao, N.; Liu, J.-X.; Sudoh, T.; Yamamoto, Y. J. Org. Chem.
 1996, 61, 4568. (b) Sudo, T.; Asao, N.; Gevorgyan, V.; Yamamoto, Y. J. Org. Chem.
 1999, 64, 2494.

Table 2. Hydroboration of Terminal Alkynes with 1a or 1b^a

				1someric ratio ^c		
entry	alkyne	borane	yield/% b	2	3	4
1	CH ₃ (CH ₂) ₇ C≡CH	1a	79	99	1	0
2		1b	81	91	7	2
3	TBDMSO(CH ₂) ₃ C≡CH	1a	72	98	2	0
4	$TBDMSOCH_2C \equiv CH$	1a	71	>99	<1	0
5	CH ₃ (TBDMSO)CHC≡CH	1a	70	98	2	0
6		1b	59	89	10	1
7	t-BuC≡CH	1a	62	89	11	0
8		1b	69	95	5	0
9^d		1b	71	97	3	0
10^{e}	Me ₃ SiC≡CH	1a	70	98	2	0
11^e		1b	59	97	3	0
12	PhC=CH	1a	60	99	1	0
13		1b	67	97	2	1

^{*a*} To a solution of $[Rh(cod)Cl]_2$ (0.015 mmol), $P(i-Pr)_3$ (0.06 mmol), Et_3N (1 mmol for **1a** and 5 mmol for **1b**), and **1a** or **1b** (1.0 mmol) in cyclohexane was added an alkyne (1.2 mmol for **1a** and 2.0 mmol for **1b**) at rt. The mixture was then stirred for 1-2 h, unless otherwise noted. ^{*b*} Isolate yields based on a borane after chromatography over silica gel. ^{*c*} Determined by ¹H NMR of crude product. ^{*d*} [Ir(cod)Cl]_2 (0.015 mmol), $P(i-Pr)_3$ (0.06 mmol), Et_3N (5 mmol), **1b** (1.0 mmol), and *t*-BuC=CH (1.2 mmol) were used. ^{*e*} At rt for 4 h.

Scheme 2. Deuterium-Labeling Experiment

to a *cis*-isomer should be ruled out because the isomerization of (*Z*)-**2** selectively led to a thermally stable (*E*)-**3** (entry 3 in Table 1). The mechanism directly producing the *cis*-product via the *trans* to *cis* isomerization of a vinyl-metal intermediate⁹ and the mechanism proceeding through the attack of metal hydride to the alkyne coordinated to a Lewis acid¹¹ do not result in the migration of an acetylenic hydrogen. A possible mechanism which might account for both the acetylenic hydrogen migration and the *anti*-addition of the B–H bond is one proceeding through a vinylidene complex **7** as shown in Scheme 3.¹²

The high electron-donating $P^{i}Pr_{3}$ favoring oxidative addition of the terminal C–H bond and stabilizing the vinylidene complex (6 \rightarrow 7) has been amply demonstrated in the Rh,¹³ Ru,¹⁴ and Ir^{13b} complexes and in the catalytic reactions induced by those Scheme 3. Catalytic Cycle (M = RhCl, IrCl)

metals.^{12,15} This process will be followed by oxidative addition of borane and the 1,2-migration of the boryl group to the α -carbon.¹⁶ The key step leading to the *cis*-product is derived from the stereospecific formation of a thermodynamically stable (*E*)-**9** which is observed in the related migratory insertion of an alkynyl^{14a} or a phenyl¹⁷ group into the vinylidene complexes. Preliminary results suggested that the presence of Et₃N suppress the *cis*-hydroboration starting from **10** because the treatment of the key intermediate [RhH(Cl)(Bcat)(PⁱPr₃)₂] (**10**) with Et₃N led to the complete reductive elimination of **1a**/Et₃N complex.¹⁸

Acknowledgment. We are indebted to Professor F. Ozawa for many helpful discussions. The research is supported by JSPS Research Fellowship for Young Scientists.

Supporting Information Available: Experimental procedures and characterization data for of all compounds (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA0002823

H.; Werner, H. Angew. Chem. Int. Ed. Engl. 1985, 24, 406.
 (14) (a) Wakatsuki, Y.; Yamazaki, H.; Kumegawa, N.; Satoh, T.; Satoh, J.
 Y. J. Am. Chem. Soc. 1991, 113, 9604. (b) Grünwald, C.; Gevert, O.; Wolf, J.; González-Herrero, P.; Werner, H. Organometallics 1996, 15, 1960. (c) Katayama, H.; Ozawa, F. Organometallics 1998, 17, 5190.

(15) Ohmura, T.; Yorozuya, S.-i.; Yamamoto, Y.; Miyaura, N. Organometallics 2000, 19, 365.

(16) A sequence of oxidative addition and migratory insertion of R_3M (R = Me, Et; M = Al, Ga) to the iridium(I) vinylidene complex has been reported: Fryzuk, M. D.; Huang, L.; McManus, N. T.; Paglia, P.; Rettig, S. J.; White, G. S. *Organometallics* **1992**, *11*, 2979.

(17) Huang, D.; Štreib, W. E.; Bollinger, J. C.; Caulton, K. G.; Winter, R. F.; Scheiring, T. J. Am. Chem. Soc. **1999**, *121*, 8087.

(18) A private communication from F. Ozawa. The synthesis of **10**: Westcott, S. A.; Taylor, N. J., Marder, T. B.; Baker, R. T.; Jones, N. J.; Calabrese, J. C. *J. Chem. Soc., Chem. Commun.* **1991**, 304.

⁽¹²⁾ For reviews of vinylidene complexes, see: (a) Bruce, M. I. Chem. Rev. **1991**, 91, 197. (b) Bruneau, C.; Dixneuf, P. H. Acc. Chem. Res. **1999**, 32, 311.

^{(13) (}a) Wolf, J.; Werner, H.; Serhadli, O.; Ziegler, M. L. Angew. Chem., Int. Ed. Engl. **1983**, 22, 414. (b) Alonso, F. J. G.; Höhn, A.; Wolf, J.; Otto, H.; Werner, H. Angew. Chem., Int. Ed. Engl. **1985**, 24, 406.